مقایسه روش های پایدارسازی مستقیم و تکراری در پایدارسازی مسئلة انتقال به سمت پایین تعیین ژئوئید
Authors
abstract
مسئله انتقال به سمت پایین میدان گرانی زمین از سطح زمین به سطح بیضوی مرجع مقایسه از این واقعیت ناشی می شود که در مسئله مقدار مرزی، تعیین ژئوئید بدون استفاده از فرمول استوکس به دنبال پتانسیل واقعی زمین روی سطح بیضوی مرجع هستیم این در حالی است که مشاهدات شتاب گرانی روی سطح زمین داده شده است. مسئله انتقال به سمت پایین میدان گرانش زمین از طریق انتگرال آبل- پواسون و مشتقات آن صورت پذیرفته و یک مسئله بدوضع است. برای به دست آوردن یک جواب پایدار بایستی از روش های پایدارسازی استفاده کرد. در این مقاله روش های متفاوت پایدارسازی مستقیم و تکراری برای انتقال به سمت پایین مشاهدات از نوع شتاب گرانی تفاضلی مقایسه و روش تکراری art به مثابة بهترین روش برای پایدارسازی معرفی شده است.
similar resources
مقایسه روشهای پایدارسازی مستقیم و تکراری در پایدارسازی مسئلة انتقال به سمت پایین تعیین ژئوئید
مسئله انتقال بهسمت پایین میدان گرانی زمین از سطح زمین به سطح بیضوی مرجع مقایسه از این واقعیت ناشی میشود که در مسئله مقدار مرزی، تعیین ژئوئید بدون استفاده از فرمول استوکس بهدنبال پتانسیل واقعی زمین روی سطح بیضوی مرجع هستیم این در حالی است که مشاهدات شتاب گرانی روی سطح زمین داده شده است. مسئله انتقال بهسمت پایین میدان گرانش زمین از طریق انتگرال آبل- پواسون و مشتقات آن صورت پذیرفته و یک مسئله ...
full textبررسی روشهای تعیین پارامتر پایدارسازی در مسئله انتقال به سمت پایین
یکی از مراحل اصلی در محاسبه ژئوئید بدون استفاده از فرمول استوکس، انتقال بهسمت پایین مشاهدات جاذبه به سطح بیضوی مبنا است. انتقال بهسمت پایین مشاهدات پس از هارمونیکسازی، از طریق انتگرال آبل- پواسون و مشتقات آن صورت میگیرد. این انتگرال یک انتگرال فردهولم نوع اول است که مجهول (پتانسیل جاذبه هارمونیک روی بیضوی مبنا) در زیر علامت انتگرال قرار دارد. تعیین این مجهول از راه معادله انتگرالی یاد شده، ...
full textمقایسه روشهای پایدارسازی معادلهی انتگرالی آبل- پواسن در مسئله انتقال به سمت پایینِ مدلسازی میدان ثقل
در روش تعیین ژئوئید و مدلسازی میدان ثقل، انتقال بسمت پایین تابعکهای میدان ثقل زمین، با حل معادله انتگرالی آبل-پواسن انجام میپذیرد. از آنجائی که معادله انتگرالی آبل-پواسن از نوع معادلات انتگرالی فردهولم نوع اول است، در زمره مسائل بد وضع (Ill-pose) قرار داشته، و یافتن جواب آن مستلزم پایدارسازی میباشد. در این مقاله 6 روش معمول پایدارسازی مسائل بد وضع، برای پایدارسازی دستگاه معادلات حاصل از گسسته...
full textروشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
روشهای گوناگونی جهت پایدار نمودن مسائل بدوضع تا کنون مطرح گردیده است. این روشها را میتوان عمدتا تحت عنوان روشهای مستقیم و تکراری تقسیمبندی نمود. تجربه نشان داده که عملکرد روش های پایدارسازی بر روی مسائل بدوضع یکسان نبوده و در مورد هر یک از مسائل بدوضع تکنیکهای مختلف پایدارسازی رفتار متفاوتی را از خود نشان میدهند. بدین لحاظ لازم است در مورد مسائل بدوضع با بررسی تکنیک های مختلف پایدارسازی ب...
full textروشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...
full textMy Resources
Save resource for easier access later
Journal title:
فیزیک زمین و فضاPublisher: موسسه ژئوفیزیک دانشگاه تهران
ISSN 8647-1025
volume 34
issue 2 2008
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023